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Abstract

The usual scenario in the fault-tolerant quantum computation involves certain
amount of qubits encoded in each code block, transversal operations between
them and destructive measurements of ancillary code blocks. We propose to
complement these techniques with code deformation, in which a given code
is progressively changed in such a way that encoded qubits can be created,
manipulated and non-destructively measured. We apply this approach to
surface codes, where the computation is performed in a single code layer which
is deformed using ‘cut and paste’ operations. All the interactions between
qubits remain purely local in a two-dimensional setting.

PACS numbers: 03.67.−a, 03.67.Lx

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum computing is the art of controlling quantum coherence at will. It is no surprise then
that the main obstacle toward this enormous achievement is the decoherence that any real-life
quantum system will suffer unavoidably. The quest to overcome this difficulty, first believed
to be insurmountable, led to the creation of quantum error correcting codes [1, 2]. These
codes revolve around the idea of storing a small amount of quantum information in a large
number of quantum degrees of freedom, so that the redundancy makes the information more
resilient to errors. Among the most fruitful ones are stabilizer quantum error correcting codes
[3, 4], which are particularly easy to analyze. Some of them even allow us to implement
interesting sets of gates transversally, that is, in such a way that localized errors do not spread
uncontrollably over the code block.

Transversal gates have proved themselves to be very useful, but sometimes they are not
enough. In this paper we consider the concept of code deformation, which enlarges the amount
of fault tolerant gates naturally implementable in a given code. The idea is that a quantum
error correcting code can be slightly changed to give a new one, and that such changes can
be applied one after the other to produce quantum gates on encoded qubits. The amount of
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encoded qubits can change due to deformations, giving rise to initialization and measurement
operations. As we will see such ideas are natural in the context of topological codes, but they
could be applied in other kinds of quantum error correcting codes.

An important practical problem regarding many theoretical proposals involving quantum
error correction and fault tolerant computation is the non-locality of the elementary gates
between the physical qubits that make up the codes. In some practical devices, elementary
gates have a local nature, a severe restriction when errors are to be taken into account. Here
dimensionality is another important issue, since it is not the same thing to have local gates in
a 1D, 2D or 3D system.

Surface codes, introduced by Kitaev [5], are stabilizer codes with the interesting feature
of being local in a 2D setup. In particular, the qubits can be arranged in a 2D lattice in
such a way that the necessary measurements to control the errors only involve as few as four
neighboring qubits. Then one can envision a quantum computer as a stack of layers. Each
layer is a surface code encoding a single qubit, and CNot gates are performed transversally
in pairs of layers. The problem with surface codes is that no other gate can be transversally
implemented. To overcome this difficulty color codes were developed [6], which are also
local in 2D, but allow the transversal implementation of the whole Clifford group, which is
enough for quantum distillation and many other quantum information tasks, such as quantum
teleportation. Extensions of color codes to 3D with nice transversal properties for universal
quantum computation are also possible [7].

However, working with a 2D setup is a rather typical scenario in technological applications
such as lithographic techniques and the like. In that case, the above setting with several stacks
of planar codes becomes useless. Then one can wonder whether it is possible to implement
non-trivial gates by means of some different scheme. In this paper we answer this question in
the positive. In particular, we show how non-destructive measurements and CNot gates can
be obtained by deforming a single-layered surface code. This is in sharp contrast with the
standard approach to surface codes.

The idea of inserting and removing physical qubits from a surface code was introduced
in [8] as a way to correct transversal Hadamard gates. This insertion and removal gives rise
to a progressive reshaping of the lattice or, what is the same, a deformation of the code. We
would like to stress that indeed there is a fixed underlying lattice of qubits. When we say
that a site is added to or removed from the surface code, we do not mean a change in the
underlying physical system but just on the stabilizers that define our code. In a sense, what we
are reshaping is a ‘software’ lattice, whereas the underlying ‘hardware’ lattice remains intact.

Similar ideas have already been discussed in the context of cluster states [9]. Our
approach differs in several aspects. First, our discussion is based solely on the properties of
2D topological codes with no additional structure, which makes it clearer. It is natural for us
to consider not only surfaces with holes, but really any kind of topologies, including those
in which two types of boundaries appear next to each other. The way in which we propose
to perform deformations fits naturally in the error correction scheme discussed in [8], and
we show how the gates discussed in that work can be applied in our context. Moreover, we
discuss code deformation in such a way that it can be inmediately applied to other codes, for
example those in [6, 7].

Regarding approaches to surface codes for topological quantum computation processing,
we want to stress that throughout this paper we are considering the scenario of active quantum
error correction introduced in [1, 2] but applied to codes based on topological properties of a
quantum system. The benefits that we want to explore in this approach come from the nice
locality properties of surface codes and the metods for code deformation that we introduce.
This is sometimes referred to as quantum protection at the software level. Yet, there is another
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approach to topological quantum computation also envisioned by Kitaev [5] that considers the
possibility of achieving the protection of quantum states at the hardware level. The underlying
idea in this alternative proposal is that the quantum topological properties of the system may
yield a self-protecting scenario in which, when an error pops up in the code, then the system
is so well-protected topologically that it can correct those errors internally by itself, without
resorting to external means as in the active error correction scenario. The initial reasons to
believe that surface codes could lead to this type of self-protecting robustness were based
on both the resistance to local errors versus global encoding along with the existence of a
protecting energy gap. This gap is allegedly the physical mechanism for the topological
protection since the quantum code is represented by the degenerate ground state of a quantum
lattice Hamiltonian and the excited states amount to errors in the quantum topological code.
However, Kitaev Hamiltonians are not stable with respect to thermal noise. This fact was
already noted in [8], and more recently, a final rigorous proof has been given in [10]. The only
known model which shows thermal stability is the 4D Kitaev model [11].

In summary, we would like to stress that in this paper our approach is that of active
quantum error correction. In particular, this means that we are not considering any Kitaev
Hamiltonian associated with our quantum codes. Instead, we perform external operations to
achieve quantum error corrections on systems where the encoding of information is done at
the topological level.

2. Code deformation

An error correcting code is a subspace of the space of states of a given quantum system. The
error correcting capabilities are related to the fact that certain operators or errors, those that
the code can detect, do not connect orthogonal encoded states. We want to consider small
changes that progressively deform one stabilizer code into another. The motivation is that
such deformations can be used to initialize, transform and measure encoded qubits.

2.1. Stabilizer codes

Given a certain number of qubits, its group of Pauli operators P is defined as that generated
by tensor products of the usual X and Z single-qubit Pauli operators. For example, if we have
five qubits, a generator would be X ⊗ 1 ⊗ Y ⊗ Z ⊗ X. A stabilizer code [3, 4] of length n is a
subspace of the quantum system of n qubits. It is described as the subspace C stabilized by an
Abelian subgroup S ⊂ P . The stabilizer group S must not contain −1 as an element, and if
it has n − k independent generators Si , the encoded subspace C has dimension 2k and thus we
say that it encodes k qubits. The encoded states |ψ〉 ∈ C are characterized by the conditions
Si |ψ〉 = |ψ〉, i = 1, . . . , n − k.

An important tool in the understanding of stabilizer codes is the normalizer N of S. This
is the subgroup of Pauli operators that commute with all the elements of S. Define the weight
of a Pauli operator as the number of non-trivial terms in its tensor product expression. Then,
the minimum of the weights of the elements of N − S gives the so-called distance of the
code. This is the minimum number of qubits that we have to manipulate in order to change
one encoded state into another. Thus, the bigger this distance, the bigger the noise resilience
of the code. From the normalizer one can always choose elements Xi, Zi, i = 1, . . . , k such
that

[Xi,Xj ] = 0, [Zi, Zj ] = 0, XiZj = (−1)δi,j XjZi. (1)

These generate the group of encoded Pauli operators, that is, the Pauli operators of the encoded
qubits.
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2.2. Code transformations

Consider two codes C, C′ with stabilizers S,S ′, both with the same number of physical qubits
n and encoded qubits k. Let us denote the generators of the stabilizers as Si, S

′
i , and the

elements of the basis of encoded Pauli operators as Xi, Zi and X′
i , Z

′
i , respectively. The

Clifford group [12] consists of those unitary operators U in our system of n qubits such that
for any element T ∈ P we have UT U † ∈ P . Consider the subset of Clifford operators U
with USU † = S ′, that is, those that transform C into C′. Such operators are very general.
For example, they include transversal operations [3, 13], in which C′ = C and U = u⊗n with
u some unitary single-qubit operator. Transversal operations have great importance in fault-
tolerant quantum computation [14, 15], but it is interesting to look for alternatives that can
widen the applicability of fault-tolerant codes. Here we explore the idea of code deformations,
in which only some of the generators of the stabilizer change. Then, if r of them change we
can write S ′

i = USiU
† = Si for i = r + 1, . . . , n − k. If this r is somehow small, it makes

sense to talk about code deformations. We will see how in surface codes deformations have
indeed a geometrical meaning, because they take the form of localized changes in the shape
of a given surface. Because these changes do not alter the topology of the surfaces, we call
them smooth deformations.

When C = C′, we have

UXiU
† ∼S

∏

j

X
aij

j Z
bij

j , UZiU
† ∼S

∏

j

X
cij

j Z
dij

j , (2)

where aij , bij , cij , dij ∈ Z2 and A ∼S B if A = BS for some S ∈ S. The evolution of the
encoded Pauli operators (2) determines, up to a phase, the unitary evolution of the encoded
qubits under U. In the case of code deformations, which change the code only partially, we
can successively apply several operators Ui so that U = Ut . . . U1 takes the code into itself.
Thus, we can use deformations to perform Clifford gates, as we will see in particular in surface
codes.

We have said that both codes, the initial and the final, have the same number of physical
qubits. However, it should be noted that we can use the previous description also in a case in
which the numbers differ. This is so because we can always enlarge any code with additional
qubits. We simply add one stabilizer generator per new qubit, each one, for example, a Z on
the corresponding qubit. This way, extra qubits are in a fixed state for encoded states and thus
do not affect the code.

Indeed, it was the need to enlarge an existing code qubit by qubit which motivated the
introduction of code deformations in [8] for surface codes. In the mentioned work the operator
U, which amounts to several local CNot gates, is applied explicitly to the code in order to
deform it. Alternatively, one can perform the deformation by measuring the new stabilizers
S ′

i , i = 1, . . . , r . Some of the measurements can give an undesired value, so that the obtained
code has stabilizers miSi with mi = ±1. This could then be corrected applying a suitable
Pauli operator, as we will see in specific examples. In practice, however, this correction is
unnecessary, at least when error correction reduces to monitor errors in the system, as in [8]. In
this case, one performs round after round of measurements. In each round, all the generators
Si are measured. These measurements are used to calculate with high confidence which errors
occurred. When some measurement is done on encoded qubits, it must be interpreted taking
these errors into account, which are never really corrected in any other way. Performing
deformations by measuring the stabilizers fits nicely in this error correction scheme, because
we can change the stabilizers to be measured from one round to another in order to get the
desired deformations. However, for this deformation procedure to work it must be possible to
correct errors successfully with high probability. In the other case, one has to apply directly
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a suitable unitary operator. In the case of surface codes, deformations can be done through
measurements as long as we keep them local when compared to the support of encoded Pauli
operators, except for encoded operators which are being initialized or measured, as we discuss
in the following section.

2.3. Initialization and measurement

The code transformations discussed in the previous section cannot change the number of
encoded qubits. They can be done without introducing stabilizer violations, simply by
implementing U suitably. But we can consider more general Clifford operators U, in particular
such that the initial code C and the final code C′ have a different number of encoded qubits.
The condition USU † = S ′ can no longer be imposed. In the case of deformations in surface
codes, as will see, these correspond to changes in the topology of the surface, and thus we call
them non-smooth deformations.

Suppose first that C encodes k qubits and C′ encodes k+1 qubits. Then C′ has one stabilizer
generator less. We consider those Clifford operators U with S ′ � U †SU , that is, those which
transform encoded states into encoded states. Then USU † is a subset of N ′ generated by
{Si}n−k

i=1 ∪ {T } where T is a non-trivial encoded Pauli operator, T ∈ N ′ − S ′. This T has
eigenvalue one after U has been applied. Thus, U not only adds one qubit but also initializes
it in a definite way. We can consider in a similar way the introduction of several new qubits
and their initialization. In the particular case of surface code deformations, such operators U
will introduce changes in the topology which increase the number of non-trivial cycles.

Now consider the reverse case, so that C encodes k qubits and C′ encodes k − 1 qubits.
Then C′ has one stabilizer generator more. We consider those Clifford operators U with
USU † � S ′, that is, those which are inverses of the transformations just considered. Then,
U †S ′U is a subset of N generated by {Si}n−k

i=1 ∪ {T } where T is a non-trivial encoded Pauli
operator, T ∈ N − S. This T is mapped onto an element of S ′ through U, and in this sense
gets measured. Thus, U removes one qubit and the corresponding degrees of freedom map
onto possible violations of the stabilizer in the new code. Again, we can consider the removal
and measurement of several qubits at the same time. For surface codes, such operators U will
introduce changes in the topology which decrease the number of non-trivial cycles.

It should be noted that after initializing T or before measuring it we do not care if the code
suffers a T error. In the first case because the encoded state satisfies T = 1, so that the action
of T is trivial. In the second case, because the error will create decoherence between states
with T = 1 and T = −1, which is irrelevant since we intend to measure T. This discussion is
pertinent for surface codes, since changes in the topology will expose the code to errors, but
these errors will always correspond to the operators being measured or initialized. In a surface
code, the protection of quantum information is obtained by storing it in non-local degrees of
freedom. Thus, it is unavoidable that when we perform an abrupt change in the topology of
the surface some degrees of freedom become local. Fortunately, this causes no harm, because
to initialize or measure an encoded operator T we only make T local.

3. Surface codes

In order to construct surface codes one starts considering any two-dimensional lattice in which
four links meet at each site and plaquettes can be two-colored. For our purposes and to fix
ideas, a ‘chessboard’ lattice in the plane will mostly suffice, see figure 1. This lattice will
have borders, which can be best understood as big missing faces. Since there are two kinds of
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a b c

d

e

f

g

Figure 1. A piece of a surface code with an irregular dark-light-dark border on the top part. There
is a qubit at each site of the lattice. Dark (light) strings represent products of Z (X) operators.
(e) Plaquette operators as strings. (c), (d) Products of plaquette operators are boundary strings.
(a), (g) If a string operator has an endpoint at a plaquette, it will not commute with the plaquette
operator. (b) If two string operators are equal up to deformation, their action on encoded states is
the same. (f ) Crossing X and Z string operators anticommute.

plaquettes, dark and light, borders have also this labeling. In the interface between a dark and
a light border there are missing edges that would separate the missing plaquettes.

To construct the quantum error correcting code from the lattice, a physical qubit must be
placed at each site. The stabilizer S is generated by plaquette operators. Given a plaquette p
we define the plaquette operator Xp (Zp) as the tensor product of X (Z) Pauli operators acting
on those qubits lying on the plaquette. Then we attach Xp operators to dark plaquettes and Zp

operators to light plaquettes. All these operators commute due to the properties of the lattice,
and thus the stabilizer is well defined.

Any operator which is just a tensor product of Z (X) operators acting on certain qubits
can be visualized as a string that goes through the corresponding sites and lives on dark (light)
plaquettes, see figure 1. So given a dark (light) strings s, i.e. a geometric object, we attach
to it the operator Zs (Xs). If a light (dark) plaquette p is considered as a small closed dark
(light) string, this definition agrees with the previous one, see figure 1(e). For a closed string
we mean a string with no endpoints. Given a dark (light) string operator s and a dark (light)
plaquette p, [Zs,Xp] = 0 ([Xs,Zp] = 0) iff p is not an endpoint of s, see figures 1(a) and
(g). Thus, if s is a dark (light) closed string then Zs ∈ N (Xs ∈ N ). As borders are indeed
missing plaquettes, a dark (light) string s with its endpoints at dark (light) borders should be
considered a closed string because Zs ∈ N (Xs ∈ N ). In terms of homology, the homology
of dark (light) strings is a homology relative to dark (light) borders [16, 17].

The previous observations imply that closed string operators generate the normalizer N
of the stabilizer S. Moreover, S is generated by boundary string operators. A dark (light)
boundary string is a string which encloses some portion of the surface, which can include
dark (light) borders but not light (dark) ones. Then the elements of N − S take the form
XsZs ′ , with s, s ′ closed and at least one of them not a boundary. The elements of the basis of
encoded Pauli operators, Xi, Zi ∈ N − S, can be chosen graphically. To this end, two points
must be taken into account. First, when two dark (light) strings s, s ′ of the same type differ
only by a boundary, see figure 1(b), the corresponding operators are equivalent up to products
with stabilizer elements, Zs ∼S Zs ′ (Xs ∼S Xs ′). When we say that s and s ′ differ only by
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(a) (b)

(c) (d)

Figure 2. (a) A surface code with a dark-light–dark-light border structure. It encodes a single
qubit. Non-trivial strings that correspond to the encoded X and Z operators are displayed. (b)
An elementary deformation. In the case that after the removal of the marked qubit (top) the new
two-sited plaquette operators have negative eigenvalue, Z operators are applied at the three marked
qubits (bottom). (c) The previous code after being deformed so that the encoded X becomes
exposed to local measurements. (d) A dark border was reduced to expose the encoded X.

a boundary we mean that they can be deformed one into the other or, more exactly, that they
are equivalent up to Z2 homology, s ∼H s ′. Secondly, if s is a dark string and s ′ a light string,
{Xs,Zs} = 0 iff s and s ′ have an odd number of sites in common or, what is the same, they
cross an odd number of times, see figure 1(f ).

All this is best illustrated with an example. Consider the surface code depicted in
figure 2(a). It encodes a single qubit. Let s be the dark string and s ′ the light one. These strings
are closed but not boundaries, and any other homologycally non-trivial string is equivalent to
one of them. The Pauli operator basis is given by Z1 = Zs and X1 = Xs ′ . The bigger the
width and height of the rectangular surface are (in terms of qubits), the more resilient the code
will be to Z and X errors, respectively.

4. Surface code deformation

We are now in a position to discuss deformations in surface codes. As we have already
mentioned, these take the form of geometrical changes in the shape of the surface. As qubits
enter and exit the code, the dark and light borders of the surface change. We can move the
borders, glue them together or create new ones cutting the surface. Although we talk about
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(a) (b)

s1

s2

s1

s2
f(s1) f(s2)

Figure 3. A deformation that takes a light hole around a dark one gives rise to a CNot gate. (a) A
piece of a surface code with a dark and a light hole and the non-trivial closed strings of interest.
(b) After the deformation, two of the strings are mapped to different ones.

introducing and removing qubits from the surface, there is a fixed underlying square lattice of
physical qubits. We change the stabilizers that define the code, not the physical system.

The basic mechanism is exemplified in figure 2(b), where a qubit in a light border is
erased, causing the removal of a light plaquette operator and the change of two dark plaquette
operators. To perform the deformation of the code, the new two-sited plaquette operators must
be measured. In the absence of errors, their eigenvalues must agree. If they are negative, we
can apply Z operators on those qubits marked in red. In practice, errors may appear and we
just perform the measurements, which will then be interpreted at the error correction stage [8].
If the inverse deformation of that of figure 2(b) is performed, corrections have to be made on
the qubit marked in green.

4.1. Smooth deformations

First we want to consider smooth deformations, in which the topology of the surface is not
altered. Such transformations cannot change the number of encoded qubits, but can perform
unitary gates on them. So suppose that we deform a surface in an arbitrary way, taking it
finally back to its original form. The total deformation gives a continuous mapping f of the
original surface onto itself. In particular, this mapping takes strings s to f (s). Recall that
encoded Pauli operators can be chosen to be string operators. Moreover, we can find light
strings si and dark strings s ′

i so that Xi := Xsi
and Zi := Zs ′

i
satisfy (1). Then, if U is the

Clifford operator that performs the desired deformation on the surface code, we have

UXiU
† = Xf (si ) ∼S

∏

j

X
aij

j , UZiU
† = Zf (s ′

i )
∼S

∏

j

Z
dij

j , (3)

where aij , dij ∈ Z2 and f (si) ∼H

∑
aij sj , f (s ′

i ) ∼H

∑
dij s

′
j . Equations (3) give the

evolution of encoded Pauli operators under U in terms of the continuous map f produced by
the deformation related to U. It should be noted that (3) is very restrictive when compared to
the general (2), so that many Clifford operations cannot be implemented using deformations.
In particular, Hadamard gates H are out of reach because H †XH = Z and deformations do
not mix X and Z operators.

An example is displayed in figure 3, where the effect of moving a light hole around a dark
one is analyzed. There are two encoded qubits involved in this operation. The deformation
maps the strings s ′

1, s2 to themselves and changes the strings s1, s
′
2 giving f (s1) ∼H s1 + s2

and f (s ′
2) ∼H s ′

1 + s ′
2. Taking Xi := Xsi

and Zi := Zs ′
i
, i = 1, 2, as the relevant encoded
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operators, the result of the deformation is

UX1U
† ∼S X1, UZ1U

† ∼S Z1Z2, UX2U
† ∼S X1X2, UZ2U

† ∼S Z2, (4)

which corresponds to a CNot gate with the first qubit as a source.

4.2. Non-smooth deformations

What happens when a surface code is drastically deformed? Let us return to the example
code of figure 2(a) and deform it till there exists a non-trivial string of length one, see
figure 2(c). Observe that at this point our code is absolutely exposed to X errors, but not to
Z errors. The point then is that not only the environment can measure the encoded X1, but
we also can. Since Z errors are still unlikely, the measurement is protected by the code.
Although the measurement seems local, in practice we have to take error correction into
account. For now on, we will just concentrate on the effects of deformations in the absence of
errors, and leave the discussion of their correction for later. The deformation can be undone,
with the net result that the encoded state has been projected. Thus, we have succeeded
in performing a non-destructive quantum measurement by code deformation. Visually, the
measurement amounts to temporarily shrinking one of the dimensions of the surface. We
could also have employed a similar procedure to measure in the border, as shown in figure
2(d). In this case one of the dark borders is contracted.

The procedures that we have just described involve only smooth deformations, because
we did not change the topology of the surface. However, in figures 2(c), (d) the removal of a
single qubit would have changed the topology. Because of the topological nature of the codes
and their error correction procedures, it is more natural to consider non-smooth deformations.
For example, let C be the surface code of figure 2(c) and let q be the qubit that maintains both
pieces of the surface connected. Suppose that we remove q to obtain a new surface code C′.
The dark square plaquettes that contained q in C are triangular after its removal. We call these
new plaquettes p, p′. Because we want C ′ to include q, we need also an extra stabilizer to
fix it. We choose Xq , the X Pauli operator on q. Removing q amounts to cutting the surface,
and C′ encodes no qubits, so that we know that the deformation maps some encoded Pauli
operator of the original code to a stabilizer of the new one. In fact, we can take U = 1 as
the deformation operator. Let |ψ〉 ∈ C. Then, if X1|ψ〉 = Xq |ψ〉 = |ψ〉, we have |ψ〉 ∈ C′.
In contrarst to, if X1|ψ〉 = Xq |ψ〉 = −|ψ〉 then |ψ〉 	∈ C′. In particular, |ψ〉 violates the
stabilizer conditions for the generators Xq,Xp and Xp′ . In this sense, in going from C to C′

we are measuring X1.
More generally, cutting a surface along a light string s that connects two different light

borders amounts to measuring Xs . For cutting the surface along s we mean removing all the
qubits along it, and we suppose that the operator U that performs the cut acts locally, in a
neighborhood of the string. To check the previous statement, consider a light string sd which
is a slight deformation of s lying out of the support of U. Then UXsd

U † = Xsd
and Xs ∼S Xsd

.
In addition, Xsd

∈ C′ because sd is a boundary on the new surface. Moreover, if |ψ〉 is an
eigenstate of the stabilizers of S ′, then Xsd

|ψ〉 = −|ψ〉 iff the number of violations in dark
plaquettes in an area with boundary sd is odd. Thus, the cut maps the eigenvalue of Xs to the
parity of the number of violations that appear at each side of the cut. In the case of cuts along
dark strings s, the measured operator is of course Zs . We can consider also inverse processes,
using similar arguments: if we paste two borders of the lattice together, the new string operator
that runs along the junction is left with definite eigenvalue 1. Other non-smooth deformations
such as puncturing and border removal are summarized in figure 4.

9



J. Phys. A: Math. Theor. 42 (2009) 095302 H Bombin and M A Martin-Delgado

(a) (b) (c)

Figure 4. The effect of non-smooth deformations. The pictures at the top part represent the initial
situation. The X string operator to be measured is displayed as a light string. The two pictures
below represent the situation afterward, depending on the measurement outcome. The figures in
the bottom correspond to the situation in which X = −1. The stabilizer violations appearing in
this case correspond to non-local Z-strings, as displayed. These discontinuous deformations can be
read off bottom-up. In this case, they represent the introduction of a new encoded qubit, together
with the initialization X = 1. (a) A cut from border to border. (b) The contraction of a border.
(c) The contraction of a hole.

4.3. Error correction

Error correction in surface codes was analyzed in great detail in [8]. Thus, here we only
intend to show how code deformation can be integrated into the picture given there, which we
summarize now. First, error correction amounts really to keeping track of errors as they show
up. To this end, the local generators of the stabilizer are measured time after time. The results
of each round of measurements give a time slice, or indeed two, one for violations of X-type
generators and one for violations of Z-type generators. For each type, the slices are arranged
in a (2+1)-D fashion, where the extra dimension is time. Then, if violations at a given time
are considered as particles, in the (2+1)-D picture we have their wordlines. In fact, from the
measurements we do not get the actual wordlines. Rather, they have to be inferred, which
can be done correctly with high probability using a certain algorithm [8] as long as errors are
below a threshold. For the procedure to succeed, the actual wordlines and the inferred ones
must be homologically equivalent.

When deformations enter the picture, the error correction procedure that we have just
described is left basically unchanged. When deformations involve a measurement, that is,
the loss of an encoded qubit, the value of the measurement must be recovered by taking
into account the corrections. That is, the relevant stabilizer violations must be checked after
errors have been canceled out. This is consistent with the fact that only the homology of the
wordlines is relevant.

4.4. A particular implementation

There are many ways to encode qubits and to manipulate them through deformations in a
surface code. Here we have chosen an implementation that is closely connected to that in
[8]. However, many other implementations could be given. For example, a disk with a dark
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(a) (b)

X

X

X

X

Z
Z
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Z = 1 Z = 1

Figure 5. (a) Each qubit is associated with a hole with a dark-light–dark-light border structure.
Non-trivial operators are labeled with their value. (b) The deformation procedure to initialize a
qubit in the state |1〉, as explained in the text.

external border and n dark holes encodes n qubits: Xi operators correspond to strings that
enclose the holes and Zi operators correspond to strings that connect holes to the external
border.

4.4.1. Encoded qubits and initialization. Our starting point is a surface code with an arbitrary
shape. As long as cut and paste operations are performed far enough from the borders, they
are unimportant. The encoded qubits are holes on this surface, with the particular dark-light–
dark-light border structure depicted in figure 5(a). We impose the condition that any string
operator that surrounds such a hole must have eigenvalue 1, something that will be preserved
by the gates proposed below. The encoded Z and X operators can be measured by shortening a
suitable border. As for the initialization procedure for these encoded qubits in |1〉 (|+〉) states,
it comprises two steps. First a dark (light) hole is created by puncturing the code. Then a pair
of light (dark) borders are grown along the border of the hole. See figure 5(b) for a picture.
The non-smooth operations involved in the procedure are the inverses of the ones shown in
figures 4(b), (c).

4.4.2. CNot gate. The deformation procedure to obtain a CNot gate is explained in
figure 6. It has three steps. First the shape of the source and target qubits must be altered
pasting respectively their dark and light borders, see figure 6(b). This operation introduces
two new encoded qubits because now new non-trivial strings exist. Next, one of the holes on
the source qubit winds around one of the holes of the target qubit, as shown in figures 6(b)
and (c). This step is where the CNot gate really takes place. Finally, both qubits must recover
their original shape. This step involves cutting along strings, so that the two qubits that were
created in the first step are measured. Comparing figures 6(a) and (d) we see that encoded
operators evolve as in (4), so that a CNOT is obtained.

4.4.3. Qubit disconnection and reconnection. It is useful to disconnect a qubit from the
rest of the surface code. This can be done in several ways, but we choose the one shown in
figure 7. Observe that the isolated qubit lives in a lattice equivalent, up to smooth deformations,
to that in figure 2. These were precisely the qubits considered in [8], and thus we can apply
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X2

X2

Z1

Z1

Z2 Z2

Z2

X1X2Z1Z2

Figure 6. The code deformation procedure to obtain a CNot gate. To improve readability, only
some of the nontrivial strings are shown. (a) The qubits prior to the gate: the left one is the
source qubit while the right one is the target. (b) A pair of paste operations are performed to
obtain two-holed qubits. The hole movement which is about to be performed is displayed dashed.
(c) The hole on the top of the first qubit winds around one of the holes of the second qubit and the
string operators deform accordingly. (d) Finally a pair of cut operations are performed to recover
the initial configuration. Encoded operators have evolved according to the intended CNot.

(a) (b)

X

Z
1

Figure 7. The code deformation procedure to disconnect a qubit from the rest of the surface code.
It can be inverted to reconnect a qubit. (a) The string operator along which the cut is done has
eigenvalue 1. (b) After the cut is done, the resulting isolated qubit lives in the inner lattice, which
is identical up to deformations to the one in figure 2(a).

all the single-layer processes considered there, such as transversal initialization of |0〉 and |+〉
states, X and Z destructive measurements and encoded Hadamard gates.

5. Conclusions

We have introduced code deformation as a tool for performing gates, initializations and
measurements in stabilizer codes. The approach has been demonstrated in surface codes,
where in conjunction with the techniques discussed in [8] it allows us to perform initialization
in |+〉 or |1〉 states, measurements in Z or X basis, CNot gates and Hadamard gates without
exposing any encoded qubit to errors. It is possible to use these operations to distill noisy states

12



J. Phys. A: Math. Theor. 42 (2009) 095302 H Bombin and M A Martin-Delgado

obtained through progressive ‘growth’ [8]. In particular, magic states [18] can be distilled in
order to perform universal quantum computation.
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